

CURSO : CROMODINÁMICA CUÁNTICA
TRADUCCIÓN : QUANTUM CHROMODYNAMICS

SIGLA : FIM3400

CRÉDITOS : 15 UC / 9 SCT MÓDULOS : 2 Teóricos REQUISITOS : FIM3406

CONECTOR :

RESTRICCIONES : 030401, 030501

CARACTER : OPTATIVO FORMATO : CÁTEDRA CALIFICACIÓN : ESTANDAR

PALABRA CLAVE : CROMODINÁMICA CUÁNTICA, TEORÍA DE LAS INTERACCIONES FUERTES.

CALIFICACION : ESTANDAR
PALABRA CLAVE : CROMODINA
NIVEL FORMATIVO : MAGISTER
DISCIPLINA : FÍSICA

I. DESCRIPCIÓN DEL CURSO

El curso aborda distintos aspectos de Cromodinámica Cuántica (QCD), la teoría de las Interacciones Fuertes, enfatizando tanto aspectos teóricos como fenomenológicos.

II. RESULTADOS DE APRENDIZAJE

Lograr una comprensión moderna de la dinámica de interacciones fuertes en el régimen perturbativo, (Expansión del Producto de Operadores (OPE), ecuaciones de evolución DGLAP y BFKL y variadas aplicaciones), presentando también algunos aspectos no perturbativos (Reglas de Suma de la QCD, Instantones, Pomerones y diagrama de fases de la QCD)

III. CONTENIDOS

- 1. Propiedades generales de Hadrones y Modelo de Quarks. Modelo de partones y aplicaciones varias, especialmente escalamiento de Bjorken en scattering electrón-protón profundamente inelástico (Deep Inelastic Scattering)
- 2. Lagrangiano de QCD: Simetrías globales (quarks ligeros y quarks pesados)
- 3. Cuantización de Teorías de Gauge y Grupo de Renormalización
- 4. Reglas de Feynman de la QCD, Libertad Asintótica y distintas aplicaciones: Violaciones al escalamiento de Bjorken en scattering electrón-protón profundamente inelástico desde la perspectiva del OPE, sector electrón-positron y jets hadrónicos, proceso Drell-Yan, decaimientos de sabores pesados, física de dos fotones.
- 5. Ecuaciones de evolución DGLAP
- 6. Evolución BFKL
- 7. Algunas Ideas sobre Reglas de Suma en QCD y otros aspectos no perturbativos tales como Instantones, Pomerones.
- 8. Inclusión de efectos térmicos y diagrama de Fases de la QCD. Aplicación a las colisiones relativistas de iones pesados

IV. ESTRATEGIAS METODOLÓGICAS

- Clases expositivas
- Solución de ejercicios (tareas). Lectura de artículos y de secciones de libros.

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE FÍSICA / DICIEMBRE 2020

- Presentación de una exposición oral.

V. ESTRATEGIAS EVALUATIVAS

- Dos Interrogaciones: I1, I2 (33% cada una)
- Tareas (17% en total)
- Exposiciones de tópicos (17%)
- Nota = $[I1 + I2 + (\langle T \rangle + Exposición)]/3$

IV. BIBLIOGRAFÍA

MÍNIMA

- S. Narison: QCD as a Theory of Hadrons (From Partons to Confinment). Cambridge
 Monographs on Particle Physics, Nuclear Physics
 and Cosmology, 2004
- R. K. Ellis, W. J. Stirling, B. R. Webber: QCD and Collider Physics. Cambridge
 Monographs on Particle Physics, Nuclear
 Physics and Cosmology, 2004
- W. Greiner, A. Schäfer: Quantum Chromodynamics, Springer Verlag 1995
- P. Pascual, R. Tarrach: QCD: Renormalization for the Practitioner, Lecture Notes in Physics, Springer, 1985

Artículos de Revisión de Physics Report, proceedings de conferencias.

COMPLEMENTARIA

N/A