

INSTITUTO DE FÍSICA FACULTAD DE FÍSICA

COURSE	:	QUANTUM CHROMODYNAMICS
TRANSLATION	:	CROMODINÁMICA CUÁNTICA
NUMBER	:	FIM3400
CREDITS	:	15 UC / 9 SCT
MODULES	:	2 THEORETICAL
REQUISITES	:	FIM3406
CONECTOR	:	AND
RESTRICTION	:	030401, 030501
CHARACTER	:	OPTATIVE
FORMAT	:	THEORICAL LECTURES
QUALIFICATION	:	STANDARD
KEY WORDS	:	QUANTUM CHROMODYNAMICS, THEORY OF STRONG INTERACTIONS
FORMATIVE LEVEL	:	MAGISTER
DISCIPLINE	:	PHYSICS

I. COURSE DESCRIPTION

This course goes into different aspects of Quantum Chromodynamics (QCD), the theory of strong interactions, emphasizing both theoretical as well as phenomenological aspects.

II LEARNING OUTCOMES

To achieve a modern understanding of the dynamics of strong interactions in the perturbative regime, (Operator Product Expansion (OPE), DGLAP and BFKL evolution equations, and various examples) phase diagram of QCD)

III. CONTENTS

- General properties og hadrons and Quark Model. Parton Model and various applications specially to Borken's scaling in electron-proton deep inelastic
- 2. QCD Lagrangan. Global symmetries (light quarks and heavy quarks)
- 3. Quantization of gauge theories and renormalization group.
- 4. Feynman rules for the QCD, asymptotic freedom and several applications: Borken's scaling violation from the perspective of the OPE, electron-positron sector and hadronic jets, Drell-Yan process, heavy flavors decay, physics of two photons
- 5. DGLAP evolution equations
- 6. BFKL evolution
- Some ideas about QCD Sum Rules and other non-perturbative scenarios like Instantons and Pomerons.
- 8. Inclusion of thermal effects and the phase diagram of QCD. Applications to relativistic heavy ion collisions.

IV. METHODOLOGICAL STRATEGIES

- Two weakly sessions
- Homeworks, Lecture of review articles and book chapters
- One oral presentation (a seminar)

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTY OF PHYSICS / DECEMBER 2020

INSTITUTO DE FÍSICA FACULTAD DE FÍSICA

V. EVALUATIVE STRATEGIES

- Two Tests: I1, I2 (33% each one)
- Homeworks (H) (assigments) (17% in total)
- Oral presentation (17%)
- Mark =[I1 +I2 + (<H> + Oral Presentation)]/3

VI. BIBLIOGRAPHY

REQUIRED

- S. Narison: QCD as a Theory of Hadrons (From Partons to Confinment). Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, 2004R. K. Ellis, W. J. Stirling, B. R. Webber: QCD and Collider Physics. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, 2004
- W. Greiner, A. Schäfer: Quantum Chromodynamics, Springer Verlag 1995
- P. Pascual, R. Tarrach: QCD: Renormalization for the Practitioner, Lecture Notes in Physics, Springer, 1985

Some Physics Reports review articles and conference

OPTIONAL

N/A