

INSTITUTO DE FÍSICA FACULTAD DE FÍSICA

CURSO	:	LABORATORIO DE IMÁGENES MÉDICAS
TRANSLATION	:	LABORATORY OF MEDICAL IMAGES
NUMBER	:	FMD3019
CREDITS	:	10 UC / 6 SCT
MODULES	:	2
REQUISTS	:	SIN REQUISITOS
RESTRICTIONS	:	030401, 030501, 030801, 030802, 030803
CHARACTER	:	OPTATIVE
FORMAT	:	THEORETICAL LECTURES, LABORATORY
QUALIFICATION	:	STANDARD
KEY WORD	:	MEDICAL PHYSICS, MEDICAL IMAGING, RADIOACTIVITY, X-R
FORMATIVE LEVEL	:	MAGISTER
DISCIPLINE	:	PHYSICS

I. COURSE DESCRIPTION

This course provides the student a direct contact with digital medical image processing. It considers computational programming of basic tools and techniques in the area, to generate a deep learning of the most relevant concepts, and the use of specialized software, at the user level, for more sophisticated applications.

II. LEARNING OUTCOMES

- $$\ensuremath{\mathsf{Describe}}$ the most relevant concepts associated with digital medical image processing.

• Create computer programs that solve typical problems in digital medical image processing.

III. CONTENT

- Image representation.
- DICOM.
- Intensity operations.
- Filters in the space domain.
- Filters in the frequency domain.
- Segmentation.
- Registration.
- Rendering.
- Application to current problems.

IV. METHODOLOGICAL STRATEGIES

- Theoretical lectures
- flipped classes
- personal research
- computer programming work (individual and in groups).

V. EVALUATIVE STRATEGIES

- Homeworks (30%)
- Controls (40%)
- Proyect (30%)

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTY OF PHYSICS / DECEMBER 2020

INSTITUTO DE FÍSICA Facultad de física

VI. BIBLIOGRAPHY

REQUIRED

 W. Birkfelner. Applied Medical Image Processing - A Basic Course -, 2nd ed. (CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL, 2011).
R. C. González and R. E. Woods. Digital Image Processing, 3rd ed. (Pearson Prentice Hall, Upper Saddle River, NJ, 2008).

• O. Demirkaya, M. H. Asyali and P. K. Sahoo. Image Processing with Matlab – Applications in Medicina and Biology. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2009).

OPTIONAL

N/A